lunes, 3 de diciembre de 2012

Programación Orientada a Objetos












 


        Es un paradigma de programación que usa los objetos en sus interacciones, para diseñar aplicaciones y programas informáticos. Está basado en varias técnicas, incluyendo herencia, cohesión, abstracción, polimorfismo, acoplamiento y encapsulamiento. Su uso se popularizó a principios de la década de los años 1990. En la actualidad, existe variedad de lenguajes de programación que soportan la orientación a objetos.



       La programación orientada a objetos es una forma de programar que trata de encontrar una solución a estos problemas. Introduce nuevos conceptos, que superan y amplían conceptos antiguos ya conocidos. Entre ellos destacan los siguientes:


  • Clase: definiciones de las propiedades y comportamiento de un tipo de objeto concreto. La instanciación es la lectura de estas definiciones y la creación de un objeto a partir de ellas.
  • Herencia: (por ejemplo, herencia de la clase C a la clase D) es la facilidad mediante la cual la clase D hereda en ella cada uno de los atributos y operaciones de C, como si esos atributos y operaciones hubiesen sido definidos por la misma D. Por lo tanto, puede usar los mismos métodos y variables publicas declaradas en C. Los componentes registrados como "privados" (private) también se heredan, pero como no pertenecen a la clase, se mantienen escondidos al programador y sólo pueden ser accedidos a través de otros métodos públicos. Esto es así para mantener hegemónico el ideal de OOP.
  • Objeto: entidad provista de un conjunto de propiedades o atributos (datos) y de comportamiento o funcionalidad (métodos), los mismos que consecuentemente reaccionan a eventos. Se corresponden con los objetos reales del mundo que nos rodea, o con objetos internos del sistema (del programa). Es una instancia a una clase.
  • Método: algoritmo asociado a un objeto (o a una clase de objetos), cuya ejecución se desencadena tras la recepción de un "mensaje". Desde el punto de vista del comportamiento, es lo que el objeto puede hacer. Un método puede producir un cambio en las propiedades del objeto, o la generación de un "evento" con un nuevo mensaje para otro objeto del sistema.
  • Evento: es un suceso en el sistema (tal como una interacción del usuario con la máquina, o un mensaje enviado por un objeto). El sistema maneja el evento enviando el mensaje adecuado al objeto pertinente. También se puede definir como evento la reacción que puede desencadenar un objeto; es decir, la acción que genera.
  • Mensaje: una comunicación dirigida a un objeto, que le ordena que ejecute uno de sus métodos con ciertos parámetros asociados al evento que lo generó.
  • Propiedad o atributo: contenedor de un tipo de datos asociados a un objeto (o a una clase de objetos), que hace los datos visibles desde fuera del objeto y esto se define como sus características predeterminadas, y cuyo valor puede ser alterado por la ejecución de algún método.
  • Estado interno: es una variable que se declara privada, que puede ser únicamente accedida y alterada por un método del objeto, y que se utiliza para indicar distintas situaciones posibles para el objeto (o clase de objetos). No es visible al programador que maneja una instancia de la clase.
  • Componentes de un objeto: atributos, identidad, relaciones y métodos.
  • Identificación de un objeto: un objeto se representa por medio de una tabla o entidad que esté compuesta por sus atributos y funciones correspondientes.



      En comparación con un lenguaje imperativo, una "variable" no es más que un contenedor interno del atributo del objeto o de un estado interno, así como la "función" es un procedimiento interno del método del objeto.




 



Características de la POO


     Existe un acuerdo acerca de qué características contempla la "orientación a objetos". Las características siguientes son las más importantes:

  • Abstracción: denota las características esenciales de un objeto, donde se capturan sus comportamientos. Cada objeto en el sistema sirve como modelo de un "agente" abstracto que puede realizar trabajo, informar y cambiar su estado, y "comunicarse" con otros objetos en el sistema sin revelar cómo se implementan estas características. Los procesos, las funciones o los métodos pueden también ser abstraídos, y, cuando lo están, una variedad de técnicas son requeridas para ampliar una abstracción. El proceso de abstracción permite seleccionar las características relevantes dentro de un conjunto e identificar comportamientos comunes para definir nuevos tipos de entidades en el mundo real. La abstracción es clave en el proceso de análisis y diseño orientado a objetos, ya que mediante ella podemos llegar a armar un conjunto de clases que permitan modelar la realidad o el problema que se quiere atacar.

  • Encapsulamiento: significa reunir todos los elementos que pueden considerarse pertenecientes a una misma entidad, al mismo nivel de abstracción. Esto permite aumentar la cohesión de los componentes del sistema. Algunos autores confunden este concepto con el principio de ocultación, principalmente porque se suelen emplear conjuntamente.

  • Modularidad: se denomina modularidad a la propiedad que permite subdividir una aplicación en partes más pequeñas (llamadas módulos), cada una de las cuales debe ser tan independiente como sea posible de la aplicación en sí y de las restantes partes. Estos módulos se pueden compilar por separado, pero tienen conexiones con otros módulos. Al igual que la encapsulación, los lenguajes soportan la modularidad de diversas formas.

  • Principio de ocultación: cada objeto está aislado del exterior, es un módulo natural, y cada tipo de objeto expone una interfaz a otros objetos que especifica cómo pueden interactuar con los objetos de la clase. El aislamiento protege a las propiedades de un objeto contra su modificación por quien no tenga derecho a acceder a ellas; solamente los propios métodos internos del objeto pueden acceder a su estado. Esto asegura que otros objetos no puedan cambiar el estado interno de un objeto de manera inesperada, eliminando efectos secundarios e interacciones inesperadas. Algunos lenguajes relajan esto, permitiendo un acceso directo a los datos internos del objeto de una manera controlada y limitando el grado de abstracción. La aplicación entera se reduce a un agregado o rompecabezas de objetos.

  • Polimorfismo: comportamientos diferentes, asociados a objetos distintos, pueden compartir el mismo nombre; al llamarlos por ese nombre se utilizará el comportamiento correspondiente al objeto que se esté usando. O, dicho de otro modo, las referencias y las colecciones de objetos pueden contener objetos de diferentes tipos, y la invocación de un comportamiento en una referencia producirá el comportamiento correcto para el tipo real del objeto referenciado. Cuando esto ocurre en "tiempo de ejecución", esta última característica se llama asignación tardía o asignación dinámica. Algunos lenguajes proporcionan medios más estáticos (en "tiempo de compilación") de polimorfismo, tales como las plantillas y la sobrecarga de operadores de C++.

  • Herencia: las clases no están aisladas, sino que se relacionan entre sí, formando una jerarquía de clasificación. Los objetos heredan las propiedades y el comportamiento de todas las clases a las que pertenecen. La herencia organiza y facilita el polimorfismo y el encapsulamiento, permitiendo a los objetos ser definidos y creados como tipos especializados de objetos preexistentes. Estos pueden compartir (y extender) su comportamiento sin tener que volver a implementarlo. Esto suele hacerse habitualmente agrupando los objetos en clases y estas en árboles o enrejados que reflejan un comportamiento común. Cuando un objeto hereda de más de una clase se dice que hay herencia múltiple.

  • Recolección de basura: la recolección de basura o garbage collector es la técnica por la cual el entorno de objetos se encarga de destruir automáticamente, y por tanto desvincular la memoria asociada, los objetos que hayan quedado sin ninguna referencia a ellos. Esto significa que el programador no debe preocuparse por la asignación o liberación de memoria, ya que el entorno la asignará al crear un nuevo objeto y la liberará cuando nadie lo esté usando. En la mayoría de los lenguajes híbridos que se extendieron para soportar el Paradigma de Programación Orientada a Objetos como C++ u Object Pascal, esta característica no existe y la memoria debe desasignarse expresamente





domingo, 2 de diciembre de 2012

Herencia


La herencia es uno de los mecanismos de los lenguajes de programación orientada a objetos basados en clases, por medio del cual una clase se deriva de otra de manera que extiende su funcionalidad. La clase de la que se hereda se suele denominar clase base, clase padre, superclase, clase ancestro (el vocabulario que se utiliza suele depender en gran medida del lenguaje de programación).

En los lenguajes que cuentan con un sistema de tipos fuerte y estrictamente restrictivo con el tipo de datos de las variables, la herencia suele ser un requisito fundamental para poder emplear el Polimorfismo, al igual que un mecanismo que permita decidir en tiempo de ejecución qué método debe invocarse en respuesta a la recepción de un mensaje, conocido como enlace tardío (late binding) o enlace dinámico (dynamic binding).
 

Ejemplo en Java

<import javax.*; import javax JOptionPane;">

 public class Mamifero{
   private int patas;
   private String nombre;
   public void imprimirPatas(){
     JOptionPane.showMessageDialog(null," Tiene " + patas + " patas\n","Mamifero",
                                   JOptionPane.INFORMATION_MESSAGE);
   }
   public Mamifero(String nombre, int patas){
     this.nombre = nombre;
     this.patas = patas;
   }
 }
 
 public class Perro extends Mamifero {
   public Perro(String nombre){
     super(nombre, 4);
   }
 }
 
 public class Gato extends Mamifero {
   public Gato(String nombre){
     super(nombre, 4);
   }
 }
 
 public class CrearPerro {
   public static void main(String [] args) {
     Perro perrito = new Perro("Pantaleon");
     perrito.imprimirPatas();   /*Está en la clase mamífero*/
   }
 }
public static void main args </source>
 

Se declaran las clases mamíferos, gato y perro, haciendo que gato y perro sean unos mamíferos (derivados de esta clase), y se ve como a través de ellos se nombra al animal pero así también se accede a patas dándole el valor por defecto para esa especie.

Es importante destacar tres cosas. La primera, es que la herencia no es un mecanismo esencial en el paradigma de programación orientada a objetos; en la mayoría de los lenguajes orientados a objetos basados en prototipos las clases no existen, en consecuencia tampoco existe la herencia y el polimorfismo se logra por otros medios. La segunda, es que el medio preferido para lograr los objetivos de extensibilidad y reutilización es la agregación o composición. La tercera, es que en lenguajes con un sistema de tipos débiles, el polimorfismo se puede lograr sin utilizar la herencia.

Por otra parte y aunque la herencia no es un concepto indispensable en el paradigma de programación orientada a objetos, es mucho más que un mecanismo de los lenguajes basados en clases, porque implica una forma de razonar sobre cómo diseñar ciertas partes de un programa. Es decir, no sólo es un mecanismo que permite implementar un diseño, sino que establece un marco conceptual que permite razonar sobre cómo crear ese diseño.

Clase Abstracta


La herencia permite que existan clases que nunca serán instanciadas directamente. En el ejemplo anterior, una clase "perro" heredaría los atributos y métodos de la clase "mamífero", así como también "gato", "delfín" o cualquier otra subclase; pero, en ejecución, no habrá ningún objeto "mamífero" que no pertenezca a alguna de las subclases. En ese caso, a una clase así se la conocería como Clase Abstracta. La ausencia de instancias específicas es su única particularidad, para todo lo demás es como cualquier otra clase.

Herencia y ocultación de información


En ciertos lenguajes, el diseñador puede definir qué variables de instancia y métodos de los objetos de una clase son visibles. En C++ y java esto se consigue con las especificaciones private, protected y public. Sólo las variables y métodos definidos como públicos en un objeto serán visibles por todos los objetos. En otros lenguajes como Smalltalk, todas las variables de instancia son privadas y todos los métodos son públicos.

Dependiendo del lenguaje que se utilice, el diseñador también puede controlar qué miembros de las superclases son visibles en las subclases. En el caso de java y C++ los especificadores de acceso (private, protected, public) de los miembros de la superclase afectan también a la herencia:

  • Private: ningún miembro privado de la superclase es visible en la subclase.

  • Protected: los miembros protegidos de la superclase son visibles en la subclase, pero no visibles para el exterior.

  • Public: los miembros públicos de la superclase siguen siendo públicos en la subclase.

CLASE

     En la programación orientada a objetos, una clase es una construcción que se utiliza como un modelo (o plantilla) para crear objetos de ese tipo. El modelo describe el estado y el comportamiento que todos los objetos de la clase comparten. Un objeto de una determinada clase se denomina una instancia de la clase. La clase que contiene (y se utilizó para crear) esa instancia se puede considerar como del tipo de ese objeto, por ejemplo, una instancia del objeto de la clase "Persona" sería del tipo "Persona".
 
       Una clase por lo general representa un sustantivo, como una persona, lugar o (posiblemente bastante abstracta) cosa - es el modelo de un concepto dentro de un programa de computadora. Fundamentalmente, encapsula el estado y el comportamiento del concepto que representa. Encapsula el estado a través de marcadores de datos llamados atributos (o variables miembro o variables de instancia), y encapsula el comportamiento a través de secciones de código reutilizables llamados métodos.
        Más técnicamente, una clase es un conjunto coherente que consiste en un tipo particular de metadatos. Una clase tiene tanto una interfaz y una estructura. La interfaz describe cómo interactuar con la clase y sus instancias con métodos, mientras que la estructura describe cómo los datos se dividen en atributos dentro de una instancia. Una clase también puede tener una representación (metaobjeto) en tiempo de ejecución, que proporciona apoyo en tiempo de ejecución para la manipulación de los metadatos relacionados con la clase. En el diseño orientado a objetos, una clase es el tipo más específico de un objeto en relación con una capa específica.
        Los lenguajes de programación que soportan clases difieren sutilmente en su soporte para diversas características relacionadas con clases. La mayoría soportan diversas formas de herencia. Muchos lenguajes también soportan características para proporcionar encapsulación, como especificadores de acceso.
 
Componentes
 

         Una clase es un contenedor de uno o más datos (variables o propiedades miembro) junto a las operaciones de manipulación de dichos datos (métodos). Las clases pueden definirse como estructuras (struct), uniones (union) o clases (class) pudiendo existir diferencias entre cada una de las definiciones según el lenguaje. Además las clases son agrupaciones de objetos que describen su comportamiento.


La sintaxis típica de una clase es:

 class Nombre { 
     // Variables miembro (habitualmente privadas)
     miembro_1; //lista de miembros 
     miembro_2; 
     miembro_3; 
 
     // Funciones o métodos (habitualmente públicas)
     funcion_miembro_1( ); // funciones miembro conocidas 
     funcion_miembro_2 ( ); // funciones como métodos 
 
     // Propiedades (habitualmente públicas)
     propiedad_1;
     propiedad_2;
     propiedad_3;
     propiedad_4;

     Las clases habitualmente se denotan con nombres abstractos como Animal, Factura... aunque también pueden representar procesos o acciones como DarAlta

Variables miembro

        Las propiedades o atributos son características de los objetos. Cuando definimos una propiedad normalmente especificamos su nombre y su tipo. Nos podemos hacer a la idea de que las variables son algo así como el almacén de los datos de estado relacionados con los objetos.
Habitualmente, las variables miembro son privadas al objeto (siguiendo las directrices de diseño del Principio de ocultación) y su acceso se realiza mediante propiedades o métodos que realizan comprobaciones adicionales.
Suelen denominarse con nombres.

Métodos en las clases

       Implementan la funcionalidad asociada al objeto. Los métodos son el equivalente a las funciones en programación estructurada. Se diferencian de ellos en que es posible acceder a las variables de la clase de forma implícita.
Cuando se desea realizar una acción sobre un objeto, se dice que se le manda un mensaje invocando a un método que realizará la acción.
Habitualmente, los métodos suelen ser verbos.

Propiedades

       Las propiedades son un tipo especial de métodos. Debido a que suele ser común que las variables miembro sean privadas para controlar el acceso y mantener la coherencia, surge la necesidad de permitir consultar o modificar su valor mediante pares de métodos: GetVariable y SetVariable.
Los lenguajes orientados a objetos más modernos (por ejemplo Java, C#) añaden la construcción de propiedad que es una sintaxis simplificada para dichos métodos:
 tipo Propiedad {
     get {
     }
     set {
     }
 }
Las propiedades se denominan con nombres como las variables

OBJETO

         En el mundo de la programación orientada a objetos (POO), un objeto es el resultado de la instanciación de una clase. Una clase es el anteproyecto que ofrece la funcionalidad en ella definida, pero ésta queda implementada sólo al crear una instancia de la clase, en la forma de un objeto. Por ejemplo: dado un plano para construir sillas (una clase de nombre clase_silla), entonces una silla concreta, en la que podemos sentarnos, construida a partir de este plano, sería un objeto de clase_silla. Es posible crear (construir) múltiples objetos (sillas) utilizando la definición de la clase (plano) anterior. Los conceptos de clase y objetos son análogos a los de tipo de datos y variable; es decir, definida una clase podemos crear objetos de esa clase, igual que disponiendo de un determinado tipo de dato (por ejemplo el tipo entero), podemos definir variables de dicho tipo:

int a,b;
( 'int' es un tipo de dato y 'a' y 'b' son variables de tipo entero con las que podemos operar)

        Para utilizar la funcionalidad definida en una clase en particular (salvo en las clases abstractas), primeramente es necesario crear un objeto de esa clase. De la misma manera, para una persona que desea sentarse, las especificaciones para construir una silla serán de poca utilidad; lo que se necesita es una silla real construida a partir de esas especificaciones. Siguiendo con la analogía anterior, también se puede decir que para hacer operaciones aritméticas, de nada sirve por sí solo el tipo entero (int); para ello necesitamos variables (o constantes) con las que operar

        Un objeto en POO representa alguna entidad de la vida real, es decir, alguno de los objetos que pertenecen al negocio con que estamos trabajando o al problema con el que nos estamos enfrentando, y con los que podemos interactuar. A través del estudio de ellos se adquiere el conocimiento necesario para, mediante la abstracción y la generalización, agruparlos según sus características en conjuntos. Estos conjuntos determinan las clases de objetos con las que estamos trabajando. Primero existen los objetos; luego aparecen las clases en función de la solución que estemos buscando. Ésta es la forma más común de adquirir conocimiento aunque no es la única. En ocasiones, cuando el observador es un experto del negocio (o del problema), el proceso puede ser a la inversa y comenzar el análisis en una base teórica abstracta, sustentada por el conocimiento previo que da lugar primeramente a clases de objetos que satisfagan las necesidades de la solución.

Estos conceptos son parte de la base teórica de la idea de objeto y clase utilizados en la POO. Los objetos tienen características fundamentales que nos permiten conocerlos mediante la observación, identificación y el estudio posterior de su comportamiento; estas características son:

  • Identidad
  • Comportamiento
  • Estado

        En las ramas de las ciencias de la computación más estrictamente matemáticas, el término objeto es usado en sentido puramente matemático para referirse a cualquier "cosa". Esta interpretación resulta útil para discutir sobre teorías abstractas, pero no es suficientemente concreta para servir como definición de un tipo primitivo en discusiones de ramas más específicas, como en la programación, que está más cerca de cálculos reales y el procesamiento de información.


Identidad



             La identidad es la propiedad que permite a un objeto diferenciarse de otros. Generalmente esta propiedad es tal, que da nombre al objeto. Tomemos por ejemplo el "verde" como un objeto concreto de una clase color; la propiedad que da identidad única a este objeto es precisamente su "color" verde. Tanto es así que para nosotros no tiene sentido usar otro nombre para el objeto que no sea el valor de la propiedad que lo identifica.

En programación la identidad de los objetos sirve para comparar si dos objetos son iguales o no. No es raro encontrar que en muchos lenguajes de programación la identidad de un objeto esté determinada por la dirección de memoria de la computadora en la que se encuentra el objeto, pero este comportamiento puede ser variado redefiniendo la identidad del objeto a otra propiedad.

Comportamiento


         El comportamiento de un objeto está directamente relacionado con su funcionalidad y determina las operaciones que este puede realizar o a las que puede responder ante mensajes enviados por otros objetos. La funcionalidad de un objeto está determinada, primariamente, por su responsabilidad. Una de las ventajas fundamentales de la POO es la reusabilidad del código; un objeto es más fácil de reutilizarse en tanto su responsabilidad sea mejor definida y más concreta.

           Una tarea fundamental a la hora de diseñar una aplicación informática es definir el comportamiento que tendrán los objetos de las clases involucradas en la aplicación, asociando la funcionalidad requerida por la aplicación a las clases adecuadas.

Estado


            El estado de un objeto se refiere al conjunto de los valores de sus atributos en un instante de tiempo dado. El comportamiento de un objeto puede modificar el estado de este. Cuando una operación de un objeto modifica su estado se dice que esta tiene "efecto colateral".

Esto tiene especial importancia en aplicaciones que crean varios hilos de ejecución. Si un objeto es compartido por varios hilos y en el transcurso de sus operaciones estas modifican el estado del objeto, es posible que se deriven errores del hecho de que alguno de los hilos asuma que el estado del objeto no cambiará

Objetos en la programación orientada a objetos

          En programación orientada a objetos (POO), una instancia de programa (por ejemplo un programa ejecutándose en una computadora) es tratada como un conjunto dinámico de objetos interactuando entre sí. Los objetos en la POO extienden la noción más general descrita en secciones anteriores para modelar un tipo muy específico que está definido fundamentalmente por:

  1. atributos, que representan los datos asociados al objeto, o, lo que es lo mismo, sus propiedades o características. Los atributos y sus valores en un momento dado, determinan el estado de un objeto.
  2. métodos, que acceden a los atributos de una manera predefinida e implementan el comportamiento del objeto.

             Los atributos y métodos de un objeto están definidos por su clase, aunque (en un lenguaje dinámico como Python o Ruby) una instancia puede poseer atributos que no fueron definidos en su clase. Algo similar ocurre con los métodos: una instancia puede contener métodos que no estén definidos en su clase de la misma manera que una clase puede declarar ciertos métodos como "métodos de clase", y estos (en dependencia del lenguaje) podrán estar o no presentes en la instancia.

             En el caso de la mayoría de los objetos, los atributos solo pueden ser accedidos a través de los métodos; de esta manera es más fácil garantizar que los datos permanecerán siempre en un estado bien definido (invariante de clase).

             
             En un lenguaje en el que cada objeto es creado a partir de una clase, un objeto es llamado una instancia de esa clase. Cada objeto pertenece a un tipo y dos objetos que pertenezcan a la misma clase tendrán el mismo tipo de dato. Crear una instancia de una clase es entonces referido como instanciar la clase.

            En casi todos los lenguajes de programación orientados a objeto, el operador "punto" (.) es usado para referirse o "llamar" a un método particular de un objeto. Un ejemplo de lenguaje que no siempre usa este operador es C++, ya que para referirse a los métodos de un objeto a través de un puntero al objeto se utiliza el operador (->).

               Considérese como ejemplo una clase aritmética llamada Aritmética. Esta clase contiene métodos como "sumar", "restar", "multiplicar", "dividir", etc. que calculan el resultado de realizar estas operaciones sobre dos números.

             Un objeto de esta clase puede ser utilizado para calcular el producto de dos números, pero primeramente sería necesario definir dicha clase y crear un objeto. En las secciones a continuación se muestra cómo hacer esto utilizando dos lenguajes de programación: C++ y Python.

Declaración de una clase


           Esta clase podría ser definida de la siguiente manera en C++:

class Aritmetica
{
    public:
        inline int sumar (int a, int b) const
        {
            return a + b;
        }
 
        inline int restar (int a, int b) const
        {
            return a - b;
        }
 
        inline float multiplicar (int a, int b) const
        {
            return a * b;
        }
 
        inline float dividir (int a, int b) const
        {
            return a / b;
        }
};
o como sigue en Python:

class Aritmetica:
    def sumar(self, a, b):
        return a + b
 
    def restar(self, a, b):
        return a - b
 
    def multiplicar(self, a, b):
        return a * b
 
    def dividir(self, a, b):
        return a / b

Instanciación de una clase en un objeto


       Para crear un objeto de tipo 'Aritmetica' (instanciar Aritmetica) en C++ se haría de la siguiente forma:

Aritmetica calculador = Aritmetica();
#Otra manera usando punteros
Aritmetica* calculador1 = new Aritmetica();
la misma operación usando python sería así:

calculador = Aritmetica()